How to Reverse Sugar Inflicted Brain Damage

Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on email

A new study from the University of Central Los Angeles (UCLA) found consumption of the sugar fructose alters hundreds of genes in your brain. 

Diseases linked to these changes range from diabetes to cardiovascular disease, and from Alzheimer’s disease to attention deficit hyperactivity disorder.

The  UCLA team sequenced more than 20,000 genes in the brain, and identified more than 700 genes in the hypothalamus (the brain’s major metabolic control center) and more than 200 genes in the hippocampus (which helps regulate learning and memory) altered by the fructose.

The genes altered are among those responsible for regulating your metabolism, cell communication and inflammation levels.

Among the conditions linked to the gene alterations are Parkinson’s disease, depression, bipolar disorder, and other brain diseases.

However, the UCLA research isn’t all bad news.

Because the researchers discovered a way to not only stop brain damage from fructose but actually reverse pre-existing damage.

Since most Americans weren’t aware of the dangers of fructose until recently, the ability to reverse previous damage is a breakthrough finding.

Reversing Fructose Brain Damage

Docosahexaenoic acid (DHA) one of the main omega-3 fatty acids commonly found in wild caught seafood, grass-fed meats, and nuts showed to be a potent cure to fructose inflicted brain damage.
“DHA changes not just one or two genes; it seems to push the entire gene pattern back to normal, which is remarkable,” said Xia Yang

DHA occurs naturally in the membranes of our brain cells, but not in a large enough quantity to help fight diseases.

“The brain and the body are deficient in the machinery to make DHA; it has to come through our diet,” said Fernando Gomez-Pinilla, a UCLA professor of neurosurgery and of integrative biology and physiology, and co-senior author of the paper.

The exact mechanisms of how DHA reverses the detrimental effects of fructose need further research, but the research team believes DHA strengthens synapses in the brain, inhibit cell death, help reconnect damaged neurons, and activate genes that help cope with brain damage while turning off those that promote brain inflammation.

The solution for to reverse fructose is pretty simple: eat minimal amounts of fructose, and eat adequate amounts of DHA.

Best Sources of Fructose Fighting DHA

As I mentioned before the highest DHA foods are wild caught seafood, grass-fed meats, and nuts, but seafood is by far the best source.

The next best option is a fish oil supplement high in DHA, but you really need to be careful which brand you use because cheap fish oil spoils easily and can actually end up doing more harm to you than good.

Our favorite brand is Nordic Naturals because they use a nitrogen extraction process which protects the fish oil from oxidative rancidity.

This oxygen-free manufacturing process allows them to deliver the best freshness levels on the market and one free from heavy metals and other toxins.

Share your experiences with fructose, eliminating fructose from your diet, and fish oil by leaving a comment in the comment section below.

Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on email
main icone

Scientific References

1. Dai YL, Luk TH, Yiu KH, et al. Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trial. Atherosclerosis. 2011 Jun;216(2):395-401.

2. Mehrabani, S., Askari, G., Miraghajani, M., Tavakoly, R., & Arab, A. (2019). Effect of coenzyme Q10 supplementation on fatigue: A systematic review of interventional studies. Complementary Therapies in Medicine, 43, 181–187. doi: 10.1016/j.ctim.2019.01.022

3. Dumont, M., Kipiani, K., Yu, F., Wille, E., Katz, M., Calingasan, N. Y., … Beal, M. F. (2011). Coenzyme Q10 Decreases Amyloid Pathology and Improves Behavior in a Transgenic Mouse Model of Alzheimers Disease. Journal of Alzheimers Disease, 27(1), 211–223. doi: 10.3233/jad-2011-110209

4. Mezawa M, Takemoto M, Onishi S, et al. The reduced form of coenzyme Q10 improves glycemic control in patients with type 2 diabetes: An open label pilot study. Biofactors. 2012 Aug 8.

5. Hernández-Camacho, J. D., Bernier, M., López-Lluch, G., & Navas, P. (2018). Coenzyme Q10 Supplementation in Aging and Disease. Frontiers in Physiology, 9. doi: 10.3389/fphys.2018.00044

6. Crowley D.C., et al. “Bioavailability and Health Effects of CoQ10 in Healthy Human Adults.” May 11, 2006.

7. Kalén, A., Appelkvist, E.-L., & Dallner, G. (1989). Age-related changes in the lipid compositions of rat and human tissues. Lipids, 24(7), 579–584. doi: 10.1007/bf02535072

8. Effects of carnitine and coenzyme Q10 on lipid profile and serum levels of lipoprotein(a) in maintenance hemodialysis patients on statin therapy. (2011). Iranian Journal of Kidney Diseases. doi: 21368390

9. Vargiu, R., Littarru, G. P., Faa, G., & Mancinelli, R. (2008). Positive inotropic effect of coenzyme Q10, omega-3 fatty acids and propionyl-L-carnitine on papillary muscle force-frequency responses of BIO TO-2 cardiomyopathic Syrian hamsters. BioFactors, 32(1-4), 135–144. doi: 10.1002/biof.5520320116

10. Johansson, P., Dahlström, Ö., Dahlström, U., & Alehagen, U. (2015). Improved health-related quality of life, and more days out of hospital with supplementation with selenium and coenzyme Q10 combined. Results from a double blind, placebo-controlled prospective study. The Journal of Nutrition, Health & Aging, 19(9), 870–877. doi: 10.1007/s12603-015-0509-9

11. Adarsh, K., Kaur, H., & Mohan, V. (2008). Coenzyme Q10(CoQ10) in isolated diastolic heart failure in hypertrophic cardiomyopathy (HCM). BioFactors, 32(1-4), 145–149. doi: 10.1002/biof.5520320117

12. Burke, B. E., Neuenschwander, R., & Olson, R. D. (2001). Randomized, Double-Blind, Placebo- Controlled Trial of Coenzyme Q10 in Isolated Systolic Hypertension. Southern Medical Journal, 94(11), 1112–1117. doi: 10.1097/00007611-200111000-00015

13. Zhai, J., Bo, Y., Lu, Y., Liu, C., & Zhang, L. (2017). Effects of Coenzyme Q10 on Markers of Inflammation: A Systematic Review and Meta-Analysis. Plos One12(1). doi: 10.1371/journal.pone.0170172

14. Lewin, A., & Lavon, H. (1997). The effect of coenzyme Q10 on sperm motility and function. Molecular Aspects of Medicine, 18, 213–219. doi: 10.1016/s0098-2997(97)00036-8

15. Preethi Srikanthan, Arun S. Karlamangla. Muscle Mass Index as a Predictor of Longevity in Older-Adults. The American Journal of Medicine, 2014; DOI: 10.1016/j.amjmed.2014.02.007

16. Folkers, K., & Simonsen, R. (1995). Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochimica Et Biophysica Acta (BBA) – Molecular Basis of Disease, 1271(1), 281–286. doi: 10.1016/0925-4439(95)00040-b

17. Farsi, F., Mohammadshahi, M., Alavinejad, P., Rezazadeh, A., Zarei, M., & Engali, K. A. (2015). Functions of Coenzyme Q10 Supplementation on Liver Enzymes, Markers of Systemic Inflammation, and Adipokines in Patients Affected by Nonalcoholic Fatty Liver Disease: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Journal of the American College of Nutrition, 35(4), 346–353. doi: 10.1080/07315724.2015.1021057