Drinking Tea May Lower Risk of Cognitive Decline by 50%

Share on facebook
Share on twitter
Share on linkedin
Share on email

Whether you drink earl grey tea over the morning paper, green tea to energize your day, or chamomile tea to help you fall asleep, you may be doing a great service for your brain.

A new study from the National University of Singapore found a cup of tea a day can keep dementia away, especially for those who are genetically predisposed to the debilitating disease.

The longitudinal study was performed over 7 years involving 957 Chinese seniors aged 55 years or older.

Information on lifestyles, medical conditions, physical and social activities were also collected.

Those potential confounding factors were carefully controlled in statistical models to ensure an accurate study.

The researchers found that regular drinking of tea lowers the risk of cognitive decline in the elderly by 50%.

More so, drinkers who were genetically predisposed to developing Alzheimer’s disease may experience a reduction in cognitive impairment risk by as much as 86%.

Along with these groundbreaking statistics, the research also noted that it didn’t matter the type of tea consumed, as long as the tea is brewed from leaves like green or black tea.

All Around Brain Protection

“While the study was conducted on Chinese elderly, the results could apply to other races as well. Our findings have important implications for dementia prevention.”

“Despite high quality drug trials, effective pharmacological therapy for neurocognitive disorders such as dementia remains elusive and current prevention strategies are far from satisfactory” , explained lead researcher Prof Feng Lei.

“Tea is one of the most widely consumed beverages in the world. The data from our study suggests that a simple and inexpensive lifestyle measure such as daily tea drinking can reduce a person’s risk of developing neurocognitive disorders in late life,” he added.

Lei and his team believe these health benefits come from teas bioactive compounds such as catechins, theaflavins thearubigins, and l-theanine.

Each of these compounds in tea exhibit potent anti-inflammatory and antioxidant effects that protect the brain from vascular damage and neurodegeneration.

And that’s all just from a single cup of tea a day!

If you already drink tea, then you should feel very good about this healthy habit.

If you’re not currently a tea drinker, do these new findings spark any interest in starting?

Whether you already drink tea or not, we would love to know your thoughts by leaving a comment in the comments section below.

Share on facebook
Share on google
Share on twitter
Share on linkedin
  1. Feng, M. -S. Chong, W. -S. Lim, Q. Gao, M. S. Z. Nyunt, T. -S. Lee, S. L. Collinson, T. Tsoi, E. -H. Kua, T. -P. Ng. Tea consumption reduces the incidence of neurocognitive disorders: Findings from the Singapore longitudinal aging study. The Journal of Nutrition, Health & Aging, 2016; 20 (10): 1002 DOI: 10.1007/s12603-016-0687-0
main icone

Scientific References

1. Dai YL, Luk TH, Yiu KH, et al. Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trial. Atherosclerosis. 2011 Jun;216(2):395-401.

2. Mehrabani, S., Askari, G., Miraghajani, M., Tavakoly, R., & Arab, A. (2019). Effect of coenzyme Q10 supplementation on fatigue: A systematic review of interventional studies. Complementary Therapies in Medicine, 43, 181–187. doi: 10.1016/j.ctim.2019.01.022

3. Dumont, M., Kipiani, K., Yu, F., Wille, E., Katz, M., Calingasan, N. Y., … Beal, M. F. (2011). Coenzyme Q10 Decreases Amyloid Pathology and Improves Behavior in a Transgenic Mouse Model of Alzheimers Disease. Journal of Alzheimers Disease, 27(1), 211–223. doi: 10.3233/jad-2011-110209

4. Mezawa M, Takemoto M, Onishi S, et al. The reduced form of coenzyme Q10 improves glycemic control in patients with type 2 diabetes: An open label pilot study. Biofactors. 2012 Aug 8.

5. Hernández-Camacho, J. D., Bernier, M., López-Lluch, G., & Navas, P. (2018). Coenzyme Q10 Supplementation in Aging and Disease. Frontiers in Physiology, 9. doi: 10.3389/fphys.2018.00044

6. Crowley D.C., et al. “Bioavailability and Health Effects of CoQ10 in Healthy Human Adults.” May 11, 2006.

7. Kalén, A., Appelkvist, E.-L., & Dallner, G. (1989). Age-related changes in the lipid compositions of rat and human tissues. Lipids, 24(7), 579–584. doi: 10.1007/bf02535072

8. Effects of carnitine and coenzyme Q10 on lipid profile and serum levels of lipoprotein(a) in maintenance hemodialysis patients on statin therapy. (2011). Iranian Journal of Kidney Diseases. doi: 21368390

9. Vargiu, R., Littarru, G. P., Faa, G., & Mancinelli, R. (2008). Positive inotropic effect of coenzyme Q10, omega-3 fatty acids and propionyl-L-carnitine on papillary muscle force-frequency responses of BIO TO-2 cardiomyopathic Syrian hamsters. BioFactors, 32(1-4), 135–144. doi: 10.1002/biof.5520320116

10. Johansson, P., Dahlström, Ö., Dahlström, U., & Alehagen, U. (2015). Improved health-related quality of life, and more days out of hospital with supplementation with selenium and coenzyme Q10 combined. Results from a double blind, placebo-controlled prospective study. The Journal of Nutrition, Health & Aging, 19(9), 870–877. doi: 10.1007/s12603-015-0509-9

11. Adarsh, K., Kaur, H., & Mohan, V. (2008). Coenzyme Q10(CoQ10) in isolated diastolic heart failure in hypertrophic cardiomyopathy (HCM). BioFactors, 32(1-4), 145–149. doi: 10.1002/biof.5520320117

12. Burke, B. E., Neuenschwander, R., & Olson, R. D. (2001). Randomized, Double-Blind, Placebo- Controlled Trial of Coenzyme Q10 in Isolated Systolic Hypertension. Southern Medical Journal, 94(11), 1112–1117. doi: 10.1097/00007611-200111000-00015

13. Zhai, J., Bo, Y., Lu, Y., Liu, C., & Zhang, L. (2017). Effects of Coenzyme Q10 on Markers of Inflammation: A Systematic Review and Meta-Analysis. Plos One12(1). doi: 10.1371/journal.pone.0170172

14. Lewin, A., & Lavon, H. (1997). The effect of coenzyme Q10 on sperm motility and function. Molecular Aspects of Medicine, 18, 213–219. doi: 10.1016/s0098-2997(97)00036-8

15. Preethi Srikanthan, Arun S. Karlamangla. Muscle Mass Index as a Predictor of Longevity in Older-Adults. The American Journal of Medicine, 2014; DOI: 10.1016/j.amjmed.2014.02.007

16. Folkers, K., & Simonsen, R. (1995). Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochimica Et Biophysica Acta (BBA) – Molecular Basis of Disease, 1271(1), 281–286. doi: 10.1016/0925-4439(95)00040-b

17. Farsi, F., Mohammadshahi, M., Alavinejad, P., Rezazadeh, A., Zarei, M., & Engali, K. A. (2015). Functions of Coenzyme Q10 Supplementation on Liver Enzymes, Markers of Systemic Inflammation, and Adipokines in Patients Affected by Nonalcoholic Fatty Liver Disease: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Journal of the American College of Nutrition, 35(4), 346–353. doi: 10.1080/07315724.2015.1021057