Is Chocolate Good For Your Brain?

Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on email

It’s not breaking news that dark chocolate has many health benefits, including a very high antioxidant content. When it comes to polyphenol and antioxidant content, dark chocolate trounces the “superfruits” — i.e., acai, pomegranate, cranberry, and blueberry.

More interestingly, dark chocolate contains a chemical called theobromine, which is like a cousin of caffeine.

Theobromine has a similar effect as caffeine, but doesn’t affecting the central nervous system.

In addition to this, the body takes much longer to clear theobromine from the body than caffeine, and both these unique properties lead to a longer and smoother stimulation.

Therefore, eliminating the usual crash associated with caffeine.

Theobromine is a vasodilator — that is, it has the ability to widen blood vessels. As a result, it works by acting on the nerves in the veins, causing them to relax in order to allow more blood flow.

This, combined with its mild stimulating effect, has been shown to give people a relaxed-like “flow” with strong focus.

Dark chocolate also affects the brain by causing the release of certain neurotransmitters.

Neurotransmitters are the molecules that transmit signals between neurons.

When eating dark chocolate, the main neurotransmitter released in the brain is phenylethylamine, which tells the body to change your blood pressure and blood sugar levels.

This change in blood pressure and blood sugar causes feelings of excitement, focus, and elevated mood in the same way amphetamines do (such as cocaine), but without the extreme side-effects of tolerance and addiction to name just a few.

Phenylethylamine is known as the “love drug” because it causes your pulse rate to quicken, resulting in a similar feeling to when someone is in love.

The focus and overall sense of well-being within the properties of dark chocolate is a fantastic combination to increase the efficiency of your performance at work or simply in whatever you would like to perform better at.

Recommended Dosage: 4 Squares a Day.

Lastly, what’s important to note about dark chocolate is that not just any old dark chocolate will do. There are plenty of dark chocolate bars that have low concentrations of actual dark chocolate and are instead filled with added sugar, fillers, and other toxins.

I recommend only buying and consuming dark chocolate bars that are at least 85% dark chocolate. Make sure you read the ingredient list for the other harmful ingredients I listed above.

If you stick to these guidelines and consume a moderate amount of dark chocolate a day (four normal-size squares), it can provide you with a much-needed boost in brain power and performance.

Share This Article

Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on email
main icone

Scientific References

1. Dai YL, Luk TH, Yiu KH, et al. Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trial. Atherosclerosis. 2011 Jun;216(2):395-401.

2. Mehrabani, S., Askari, G., Miraghajani, M., Tavakoly, R., & Arab, A. (2019). Effect of coenzyme Q10 supplementation on fatigue: A systematic review of interventional studies. Complementary Therapies in Medicine, 43, 181–187. doi: 10.1016/j.ctim.2019.01.022

3. Dumont, M., Kipiani, K., Yu, F., Wille, E., Katz, M., Calingasan, N. Y., … Beal, M. F. (2011). Coenzyme Q10 Decreases Amyloid Pathology and Improves Behavior in a Transgenic Mouse Model of Alzheimers Disease. Journal of Alzheimers Disease, 27(1), 211–223. doi: 10.3233/jad-2011-110209

4. Mezawa M, Takemoto M, Onishi S, et al. The reduced form of coenzyme Q10 improves glycemic control in patients with type 2 diabetes: An open label pilot study. Biofactors. 2012 Aug 8.

5. Hernández-Camacho, J. D., Bernier, M., López-Lluch, G., & Navas, P. (2018). Coenzyme Q10 Supplementation in Aging and Disease. Frontiers in Physiology, 9. doi: 10.3389/fphys.2018.00044

6. Crowley D.C., et al. “Bioavailability and Health Effects of CoQ10 in Healthy Human Adults.” May 11, 2006.

7. Kalén, A., Appelkvist, E.-L., & Dallner, G. (1989). Age-related changes in the lipid compositions of rat and human tissues. Lipids, 24(7), 579–584. doi: 10.1007/bf02535072

8. Effects of carnitine and coenzyme Q10 on lipid profile and serum levels of lipoprotein(a) in maintenance hemodialysis patients on statin therapy. (2011). Iranian Journal of Kidney Diseases. doi: 21368390

9. Vargiu, R., Littarru, G. P., Faa, G., & Mancinelli, R. (2008). Positive inotropic effect of coenzyme Q10, omega-3 fatty acids and propionyl-L-carnitine on papillary muscle force-frequency responses of BIO TO-2 cardiomyopathic Syrian hamsters. BioFactors, 32(1-4), 135–144. doi: 10.1002/biof.5520320116

10. Johansson, P., Dahlström, Ö., Dahlström, U., & Alehagen, U. (2015). Improved health-related quality of life, and more days out of hospital with supplementation with selenium and coenzyme Q10 combined. Results from a double blind, placebo-controlled prospective study. The Journal of Nutrition, Health & Aging, 19(9), 870–877. doi: 10.1007/s12603-015-0509-9

11. Adarsh, K., Kaur, H., & Mohan, V. (2008). Coenzyme Q10(CoQ10) in isolated diastolic heart failure in hypertrophic cardiomyopathy (HCM). BioFactors, 32(1-4), 145–149. doi: 10.1002/biof.5520320117

12. Burke, B. E., Neuenschwander, R., & Olson, R. D. (2001). Randomized, Double-Blind, Placebo- Controlled Trial of Coenzyme Q10 in Isolated Systolic Hypertension. Southern Medical Journal, 94(11), 1112–1117. doi: 10.1097/00007611-200111000-00015

13. Zhai, J., Bo, Y., Lu, Y., Liu, C., & Zhang, L. (2017). Effects of Coenzyme Q10 on Markers of Inflammation: A Systematic Review and Meta-Analysis. Plos One12(1). doi: 10.1371/journal.pone.0170172

14. Lewin, A., & Lavon, H. (1997). The effect of coenzyme Q10 on sperm motility and function. Molecular Aspects of Medicine, 18, 213–219. doi: 10.1016/s0098-2997(97)00036-8

15. Preethi Srikanthan, Arun S. Karlamangla. Muscle Mass Index as a Predictor of Longevity in Older-Adults. The American Journal of Medicine, 2014; DOI: 10.1016/j.amjmed.2014.02.007

16. Folkers, K., & Simonsen, R. (1995). Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochimica Et Biophysica Acta (BBA) – Molecular Basis of Disease, 1271(1), 281–286. doi: 10.1016/0925-4439(95)00040-b

17. Farsi, F., Mohammadshahi, M., Alavinejad, P., Rezazadeh, A., Zarei, M., & Engali, K. A. (2015). Functions of Coenzyme Q10 Supplementation on Liver Enzymes, Markers of Systemic Inflammation, and Adipokines in Patients Affected by Nonalcoholic Fatty Liver Disease: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Journal of the American College of Nutrition, 35(4), 346–353. doi: 10.1080/07315724.2015.1021057